Latent Class Analysis with poLCA

On an airplane the other day, I learned of a method called latent class (transition) analysis, and it sounded like an interesting thing to try in R. Of course, as with everything R, There is a Package for That, called poLCA, written by none other than Drew Linzer (of Votamatic fame) and Jeffrey Lewis.

I wasn’t able to think of a good application for transition analysis specifically, but I did use Christopher’s ANES data to estimate latent “types” of respondents. The example model illustrates a four-class model, and I’ll leave it as an exercise for the interested reader to assign subjective names to each class.

This Gist also attempts to improve on the default plot both by eschewing the 3-D effect, and by putting classes, rather than variables, in direct comparison with one another. Also, for what it’s worth, the plot code shows how to draw a bar plot when you have already computed counts or proportions — useĀ stat=”identity”.

Thanks for celebrating Advent with us, and for your feedback and support. We’re taking a little break after tomorrow’s post, but we’ll be back better than ever next year!